91³Ô¹Ï

ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
91³Ô¹Ï

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 91³Ô¹Ï Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

91³Ô¹Ï Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 3330

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

A novel isolation method of cellulose nanocrystals from microcrystalline cellulose

7th Asia-Pacific Biotech Congress

Joon-Pyo Jeun, Byoung-Min Lee, Du-Young Kim, Jin-Young Lee and Phil-Hyun Kang

ScientificTracks Abstracts: J Biotechnol Biomater

DOI:

Abstract
In this study, we investigated an effective isolation method of the cellulose nanocrystal (CNC) to find a rapid and high-yield using an electron beam irradiation (EBI). Commercial microcrystalline cellulose (Avicel PH-101), purchased from Sigma- Aldrich, was used as a starting material. CNC was obtained from Avicel PH-101 with sulfuric acid by both controlling the irradiation dose varied and the time of hydrolysis treatment. In experimental, the EBI of the Avicel PH-101was performed at various doses ranging from 50 to 200 kGy and then hydrolyzed with 65% sulfuric acid at (pre-heated) 45oCfor 30, 60, 90, 120 min. Particle size characterization and FE-SEM clearly showed the formation of rod-like shaped 50-CNC-301) (average particle size: 330 nm) and 0-CNC-120 (average particle size: 319 nm). X-ray diffraction indicated that 50-CNC-30 has higher crystallinity index (78.0%) than that of 0-CNC-120 (76.7%). We could decrease the hydrolysis time of CNC from 120 min (0-CNC-120) to 30 min (50-CNC-30). Moreover, the yield of CNC was improved from 44% (0-CNC-120) to 51% (50-CNC-30). To demonstrate these results, elemental analysis (EA) showed sulfur impurity (0.51-0.74%) in CNC along with other main components (C, H, and O).X-ray photoelectron spectroscopy (XPS), Zeta-potential, and thermal stability (TGA-DTG) of CNC were also carried out. An EBI-induced novel isolation method of CNC can be effective and facile process in industrial applications. 1) Irradiation dose; 50kGy, Hydrolysis time; 30 min.
Biography
Joon-Pyo Jeun is a Senior Researcher in the Radiation Research Division for Industry & Environment at Korea Atomic Energy Research Institute (KAERI) since 2005. He is currently enrolled in the Doctorâ??s program in the Department of Chemical & Biomolecular Engineering from Korea Advanced Institute of Science and Technology in Republic of Korea. His field of research is interaction of radiation with matter.
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top